
12/11/2014

1

Lecture 7: Enhanced Concurrency in Java

• java.util.concurrent:

– Semaphore class

– Interface Lock/ Class Condition

– Bounded Buffers Implementation

– Bank Account Implementation

– Interface Executor

– Futures/Callables

CA463D Lecture Notes (Martin Crane 2014) 1

Recent Developments in java.util.concurrent

• Up to now, have focused on the low-level APIs that have

been part of the Java platform from the very beginning.

• These APIs are adequate for basic tasks, but need higher-

level constructs for more advanced tasks (esp for massively

parallel applications exploiting multi-core systems).

• In this lecture we'll examine some high-level concurrency

features introduced in more recent Java releases.

• Most of these features are implemented in the new

java.util.concurrent packages.

• There are also new concurrent data structures in the Java

Collections Framework.

2CA463D Lecture Notes (Martin Crane 2014)

12/11/2014

2

Features in Brief
• Semaphore objects are similar to what we have come up against

already; acquire() & release() take the place of P , V (resp)

• Lock objects support locking idioms that simplify many concurrent

applications (don’t confuse with their implicit cousins seen above!)

• Executors define a high-level API for launching, managing threads.

• Executor implementations provide thread pool management

suitable for large-scale applications.

• Concurrent Collections support concurrent management of large

collections of data in HashTables, different kinds of Queues etc.

• Future objects are enhanced to have their status queried and

return values when used in connection with asynchronous threads.

• Atomic variables (eg AtomicInteger) support atomic operations

on single variables have features that minimize synchronization and

help avoid memory consistency errors.

3CA463D Lecture Notes (Martin Crane 2014)

Semaphore Objects

• Often developers need to throttle the number of open

requests (threads/actions) for a particular resource.

• Sometimes, throttling can improve the throughput of a

system by reducing the amount of contention against that

particular resource.

• Alternatively it might be a question of starvation

prevention (cf room example of Dining Philosophers above)

• Can write the throttling code by hand, it's easier to use

semaphore class, which takes care of it for you.

4CA463D Lecture Notes (Martin Crane 2014)

12/11/2014

3

Semaphore Example

5

//SemApp: code to demonstrate semaphore class © Ted Neward
import java.util.*;import java.util.concurrent.*;

public class SemApp {
public static void main(String[] args) {

Runnable limitedcall = new Runnable {
final Random rand = new Random();
final Semaphore available = new Semaphore(3);
int count = 0;
public void run() {

int time = rand.nextInt(15);
int num = count++;
try {

available.acquire();
System.out.println("Executing “ + “long-

run action for “ + time + “ secs.. #" + num);
Thread.sleep(time * 1000);
System.out.println("Done with # “ + num);
available.release();
}

catch (InterruptedException intEx) {
intEx.printStackTrace();

}
}

};
for (int i=0; i<10; i++)
new Thread(limitedCall).start(); // kick off worker threads

} // end main
} // end SemApp

CA463D Lecture Notes (Martin Crane 2014)

Semaphore Example (cont’d)

• Even though the 10 threads in this sample are running

(which you can verify by executing jstack against the Java

process running SemApp), only three are active.

• The other seven are held at bay until one of the semaphore

counts is released.

• Actually, the Semaphore class supports acquiring and

releasing more than one permit at a time, but that wouldn't

make sense in this scenario.

6CA463D Lecture Notes (Martin Crane 2014)

12/11/2014

4

Interface Lock
• Lock implementationss work very much like the implicit locks used by

synchronized code (only 1 thread can own a Lock object at a time1.)

• Unlike intrinsic locking all lock and unlock operations are explicit

and have bound to them explicit Condition objects.

• Their biggest advantage over implicit locks is can back out of an

attempt to acquire a Lock:

– i.e. livelock, starvation & deadlock are not a problem

• Lock methods:

– tryLock() returns if lock is not available immediately or

before a timeout (optional parameter) expires.

– lockInterruptibly() returns if another thread sends an interrupt before

the lock is acquired.
1 A thread cannot acquire a lock owned by another thread, but a thread can acquire a lock that it

already owns. Letting a thread acquire the same lock more than once enables Reentrant

Synchronization. This refers to the ability of a thread owning the lock on a synchronized piece of

code to invoke another bit of synchronized code e.g. in a monitor.
CA463D Lecture Notes (Martin Crane 2014 7

Interface Lock

• Lock interface also supports a wait/notify mechanism, through the

associated Condition objects

• Thus they replace basic monitor methods (wait(), notify() and

notifyAll()) with specific objects:

– Lock in place of synchronized methods and statements.

– An associated Condition in place of Object’s monitor methods.

– A Condition instance is intrinsically bound to a Lock.

• To obtain a Condition instance for a particular Lock instance use its

newCondition() method.

8CA463D Lecture Notes (Martin Crane 2014)

12/11/2014

5

Reentrantlocks & synchronizedMethods

• Reentrantlock implements lock interface with the same

mutual exclusion guarantees as synchronized.

• Acquiring a Reentrantlock has the same memory semantics as

entering a synchronized block and releasing a Reentrantlock

has the same memory semantics as exiting a synchronized block.

• So why use a Reentrantlock in the first place?

– Using synchronized provides access to the implicit lock associated with

every object, but forces all lock acquisition/release to occur in a block-

structured way: if multiple locks are acquired they must be released in the

opposite order.

– Reentrantlock allows for a more flexible locking/releasing mechanism.

• So why not deprecate synchronized?

– Firstly, a lot of legacy Java code uses it and

– Secondly, there are performance implications to using Reentrantlock

CA463D Lecture Notes (Martin Crane 2014) 9

Bounded Buffer using Lock & Condition

10

class BoundedBuffer {

final Lock lock = new ReentrantLock();

final Condition notFull = lock.newCondition();

final Condition notEmpty= lock.newCondition();

final Object[] items = new Object[100];

int putptr, takeptr, count;

public void put(Object x) throws

InterruptedException {

lock.lock(); // Acquire lock on object

try {

while (count == items.length)

notFull.await();

items[putptr] = x;

if (++putptr == items.length)

putptr = 0;

++count;

notEmpty.signal();

}

finally {

lock.unlock(); // release the lock

}

}

public Object take() throws

InterruptedException {

lock.lock();// Acquire lock on object

try {

while (count == 0)

notEmpty.await();

Object x = items[takeptr];

if (++takeptr == items.length)

takeptr = 0;

--count;

notFull.signal();

return x;

}

finally {

lock.unlock(); // release the lock

}

}

}

CA463D Lecture Notes (Martin Crane 2014)

12/11/2014

6

CA463D Lecture Notes (Martin Crane 2013) 11

Bank Account Example

using Lock & Condition Objects

12

Bank Account Example using

Lock & Condition Objects (cont’d)

CA463D Lecture Notes (Martin Crane 2014)

12/11/2014

7

• With intrinsic locks deadlock can be serious, so tryLock() is used to

allow control to be regained if all the locks cannot be acquired.

• tryLock() returns if lock is unavailable immediately or before a

timeout expires (parameters specified).

• At fromAcct.lock.tryLock code trys to acquire lock on fromAcct:

– If successful, it moves to try and acquire that the lock on toAcct.

– If former is successful but the latter is unsuccessful, one can back off, release

the one acquired and retry at a later time.

– On acquiring both locks & if sufficient money in the fromAcct, debit() on

this object is called for the sum amount & credit()on toAcct is called with

the same quantity & true is returned as value of boolean TransferMoney().

– If there are insufficient funds, an exception to that effect is returned.

13

Bank Account using Lock & Condition Objects (cont’d)

CA463D Lecture Notes (Martin Crane 2014)

Executors
• As seen above, one method of creating a multithreaded

application is to implement Runnable.

• In J2SE 5.0, this becomes the preferred means (using

package java.lang) and built-in methods and classes are

used to create Threads that execute the Runnables.

• As also seen, the Runnable interface declares a single method

named run.

• Runnables are executed by an object of a class that

implements the Executor interface.

• This can be found in package java.util.concurrent.

• This interface declares a single method named Execute.

• An Executor object typically creates and manages a

group of threads called a thread pool.
14CA463D Lecture Notes (Martin Crane 2014)

12/11/2014

8

• Threads in a thread pool execute the Runnable objects passed to

the execute method.

• The Executor assigns each Runnable to one of the available

threads in the thread pool.

• If no threads are available, the Executor creates a new thread or

waits for a thread to become available and assigns that thread the

Runnable that was passed to method execute.

• Depending on the Executor type, there may be a limit to the

number of threads that can be created.

• A subinterface of Executor (Interface ExecutorService) declares

other methods to manage both Executor and task /thread life cycle

• An object implementing the ExecutorService sub-interface can

be created using static methods declared in class Executors.

15

Executors (cont’d)

CA463D Lecture Notes (Martin Crane 2014)

Executors Example

16

//From Deitel & Deitel PrintTask class sleeps a random time 0 - 5 seconds
import java.util.Random;

class PrintTask implements Runnable {

private int sleepTime; // random sleep time for thread

private String threadName; // name of thread
private static Random generator = new Random();
// assign name to thread
public PrintTask(String name)

threadName = name; // set name of thread
sleepTime = generator.nextInt(5000); // random sleep 0-5 secs

} // end PrintTask constructor

// method run is the code to be executed by new thread
public void run()

try // put thread to sleep for sleepTime {
System.out.printf("%s sleeps for %d ms.\n",threadName,sleepTime);
Thread.sleep(sleepTime); // put thread to sleep

} // end try
// if thread interrupted while sleeping, print stack trace

catch (InterruptedException exception) {
exception.printStackTrace();

} // end catch
// print thread name

System.out.printf("%s done sleeping\n", threadName);
} // end method run

} // end class PrintTask
CA463D Lecture Notes (Martin Crane 2014)

12/11/2014

9

Executors Example (cont’d)
• When a PrintTask is assigned to a processor for the first time,

its run method begins execution.

• The static method sleep of class Thread is invoked to place

the thread into the timed waiting state.

• At this point, the thread loses the processor, and the system

allows another thread to execute.

• When the thread awakens, it reenters the runnable state.

• When the PrintTask is assigned to a processor again, the

thread’s name is output saying the thread is done sleeping and

method run terminates.

17CA463D Lecture Notes (Martin Crane 2014)

Executors Example Main Code

CA463D Lecture Notes (Martin Crane 2014) 18

//RunnableTester: Multiple threads printing at different intervals
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;

public class RunnableTester {

public static void main(String[] args) {

// create and name each runnable
PrintTask task1 = new PrintTask("thread1");
PrintTask task2 = new PrintTask("thread2");
PrintTask task3 = new PrintTask("thread3");

System.out.println("Starting threads");

// create ExecutorService to manage threads
ExecutorService threadExecutor

= Executors.newFixedThreadPool(3);
// start threads and place in runnable state
threadExecutor.execute(task1); // start task1
threadExecutor.execute(task2); // start task2
threadExecutor.execute(task3); // start task3

threadExecutor.shutdown(); // shutdown worker threads

System.out.println("Threads started, main ends\n");
} // end main

} // end RunnableTester

12/11/2014

10

Executors Example Main Code (cont’d)

• The code above creates three threads of execution using the

PrintTask class.

• main

– creates and names three PrintTask objects.

– creates a new ExecutorService using method

newFixedThreadPool() of class Executors, which creates a

pool consisting of a fixed number (3) of threads.

– These threads are used by threadExecutor to execute the

Runnables.

– If execute() is called and all threads in ExecutorService are

in use, the Runnable will be placed in a queue and assigned to

the first thread that completes its previous task.

CA463D Lecture Notes (Martin Crane 2014) 19

Executors Example Main Code (cont’d)

Sample Output

CA463D Lecture Notes (Martin Crane 2014) 20

Starting threads

Threads started, main ends

thread1 sleeps for 1217 ms.

thread2 sleeps for 3989 ms.

thread3 sleeps for 662 ms.

thread3 done sleeping

thread1 done sleeping

thread2 done sleeping

12/11/2014

11

Futures/Callables

• Pre-Java 8 version of Futures was quite weak, only

supporting waiting for future to complete.

• Also executor framework above works with Runnables

& Runnable cannot return a result.

• A Callable object allows return values after completion.

• The Callable object uses generics to define the type of

object which is returned.

• If you submit a Callable object to an Executor,

framework returns java.util.concurrent.Future.

• This Future object can be used to check the status of a

Callable and to retrieve the result from the Callable.

CA463D Lecture Notes (Martin Crane 2014)

Futures/Callables1 (cont’d)

22

1This code and associated piece on the next page were written and are Copyright © Lars Vogel.

Source Code can be found at de.vogella.concurrency.callables.

CA463D Lecture Notes (Martin Crane 2014)

12/11/2014

12

Futures/

Callables1 (cont’d)

CA463D Lecture Notes (Martin Crane 2014) 23
1 Copyright © Lars Vogel, 2013

