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Lecture 7: Enhanced Concurrency in Java

• java.util.concurrent:

– Semaphore class

– Interface Lock/ Class Condition 

– Bounded Buffers Implementation

– Bank Account Implementation

– Interface Executor

– Futures/Callables
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Recent Developments in java.util.concurrent

• Up to now, have focused on the low-level APIs that have 

been part of the Java platform from the very beginning.

• These APIs are adequate for basic tasks, but need higher-

level constructs for more advanced tasks (esp for massively 

parallel  applications exploiting multi-core systems).

• In this lecture we'll examine some high-level concurrency 

features introduced in more recent Java releases. 

• Most of these features are implemented in the new 

java.util.concurrent packages. 

• There are also new concurrent data structures in the Java 

Collections Framework.
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Features in Brief
• Semaphore objects are similar to what we have come up against 

already; acquire() & release() take the place of P , V (resp)

• Lock objects support locking idioms that simplify many concurrent 

applications (don’t confuse with their implicit cousins seen above!)

• Executors define a high-level API for launching, managing threads. 

• Executor implementations provide thread pool management 

suitable for large-scale applications.

• Concurrent Collections support concurrent management of large 

collections of data in HashTables, different kinds of Queues etc.

• Future objects are enhanced to have their status queried and 

return values when used in connection with asynchronous threads.

• Atomic variables (eg AtomicInteger) support atomic operations 

on single variables have features that minimize synchronization and 

help avoid memory consistency errors.
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Semaphore Objects

• Often developers need to throttle the number of open 

requests (threads/actions) for a particular resource.

• Sometimes, throttling can improve the throughput of a 

system by reducing the amount of contention against that 

particular resource. 

• Alternatively it might be a question of starvation 

prevention (cf room example of Dining Philosophers above)

• Can write the throttling code by hand, it's easier to use 

semaphore class, which takes care of it for you.
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Semaphore Example

5

//SemApp: code to demonstrate semaphore class © Ted Neward
import java.util.*;import java.util.concurrent.*;

public class SemApp {
public static void main( String[] args ) {

Runnable limitedcall = new Runnable {
final Random rand = new Random();
final Semaphore available = new Semaphore(3);
int count = 0;
public void run() {

int time = rand.nextInt(15);
int num = count++;
try {

available.acquire();
System.out.println("Executing “ + “long-

run action for “ + time + “ secs.. #" + num);
Thread.sleep(time * 1000);
System.out.println("Done with # “ + num);
available.release();
}

catch (InterruptedException intEx) {
intEx.printStackTrace();

}
}

};
for (int i=0; i<10; i++)
new Thread(limitedCall).start(); // kick off worker threads

} // end main
} // end SemApp
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Semaphore Example (cont’d)

• Even though the 10 threads in this sample are running 

(which you can verify by executing jstack against the Java 

process running SemApp), only three are active. 

• The other seven are held at bay until one of the semaphore 

counts is released. 

• Actually, the Semaphore class supports acquiring and 

releasing more than one permit at a time, but that wouldn't 

make sense in this scenario.
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Interface Lock
• Lock implementationss work very much like the implicit locks used by 

synchronized code (only 1 thread can own a Lock object at a time1.)

• Unlike intrinsic locking all lock and unlock operations are explicit 

and have bound to them explicit  Condition objects.  

• Their biggest advantage over implicit locks is can back out of an 

attempt to acquire a Lock:

– i.e. livelock, starvation & deadlock are not a problem

• Lock methods:

– tryLock() returns if lock is not available immediately or 

before a timeout (optional parameter) expires.

– lockInterruptibly() returns if another thread sends an interrupt before 

the lock is acquired.
1 A thread cannot acquire a lock owned by another thread, but a thread can acquire a lock that it 

already owns. Letting a thread acquire the same lock more than once enables Reentrant

Synchronization. This refers to the ability of a thread owning the lock on a synchronized piece of 

code to invoke another bit of synchronized code e.g. in a monitor.
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Interface Lock

• Lock interface also supports a wait/notify mechanism, through the 

associated Condition objects

• Thus they replace basic monitor methods (wait(), notify() and 

notifyAll()) with specific objects:

– Lock in place of synchronized methods and statements.

– An associated Condition in place of Object’s monitor methods.

– A Condition instance is intrinsically bound to a Lock. 

• To obtain a Condition instance for a particular Lock instance use its 

newCondition() method.  
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Reentrantlocks & synchronizedMethods

• Reentrantlock implements lock interface with the same 

mutual exclusion guarantees as synchronized. 

• Acquiring a Reentrantlock has the same memory semantics as 

entering a synchronized block and releasing a Reentrantlock

has the same memory semantics as exiting a synchronized block.  

• So why use a Reentrantlock in the first place?  

– Using synchronized provides access to the implicit lock associated with 

every object, but forces all lock acquisition/release to occur in a block-

structured way: if multiple locks are acquired they must be released in the 

opposite order. 

– Reentrantlock allows for a more flexible locking/releasing mechanism.  

• So why not deprecate synchronized?  

– Firstly, a lot of legacy Java code uses it and 

– Secondly, there are performance implications to using Reentrantlock
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Bounded Buffer using Lock & Condition
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class BoundedBuffer {

final Lock lock = new ReentrantLock();

final Condition notFull = lock.newCondition(); 

final Condition notEmpty= lock.newCondition();

final Object[] items = new Object[100];

int putptr, takeptr, count;

public void put(Object x) throws 

InterruptedException {

lock.lock(); // Acquire lock on object

try {

while (count == items.length)

notFull.await();

items[putptr] = x;

if (++putptr == items.length) 

putptr = 0;

++count;

notEmpty.signal();

} 

finally {

lock.unlock(); // release the lock

}

}

public Object take() throws 

InterruptedException {

lock.lock();// Acquire lock on object

try {

while (count == 0)

notEmpty.await();

Object x = items[takeptr];

if (++takeptr == items.length) 

takeptr = 0;

--count;

notFull.signal();

return x;

} 

finally {

lock.unlock(); // release the lock

}

}

}
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Bank Account Example 

using Lock & Condition Objects

12

Bank Account Example using 

Lock & Condition Objects (cont’d)
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• With intrinsic locks deadlock can be serious, so tryLock() is used to 

allow control to be regained if all the locks cannot be acquired.  

• tryLock() returns if lock is unavailable immediately or before a 

timeout expires (parameters specified).  

• At fromAcct.lock.tryLock code trys to acquire lock on fromAcct:

– If successful, it moves to try and acquire that the lock on toAcct.  

– If former is successful but the latter is unsuccessful, one can back off, release 

the one acquired and retry at a later time.

– On acquiring both locks & if sufficient money in the fromAcct, debit() on 

this object is called for the sum amount & credit()on toAcct is called with 

the same quantity & true is returned as value of boolean TransferMoney().  

– If there are insufficient funds, an exception to that effect is returned.

13

Bank Account using Lock & Condition Objects (cont’d)
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Executors
• As seen above, one method of creating a multithreaded 

application is to implement Runnable.  

• In J2SE 5.0, this becomes the preferred means (using 

package java.lang) and built-in methods and classes are 

used to create Threads that execute the Runnables. 

• As also seen, the Runnable interface declares a single method 

named run. 

• Runnables are executed by an object of a class that 

implements the Executor interface.

• This can be found in package java.util.concurrent. 

• This interface declares a single method named Execute. 

• An Executor object typically creates and manages a 

group of threads called a thread pool.
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• Threads in a thread pool execute the Runnable objects passed to 

the execute method. 

• The Executor assigns each Runnable to one of the available 

threads in the thread pool.

• If no threads are available, the Executor creates a new thread or 

waits for a thread to become available and assigns that thread the

Runnable that was passed to method execute. 

• Depending on the Executor type, there may be a limit to the 

number of threads that can be created.

• A subinterface of Executor (Interface ExecutorService) declares 

other methods to manage both Executor and task /thread life cycle

• An object implementing the ExecutorService sub-interface can 

be created using static methods declared in class Executors.

15

Executors (cont’d)
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Executors Example 
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//From Deitel & Deitel PrintTask class sleeps a random time 0 - 5 seconds
import java.util.Random;

class PrintTask implements Runnable {

private int sleepTime; // random sleep time for thread

private String threadName; // name of thread
private static Random generator = new Random();
// assign name to thread
public PrintTask(String name)

threadName = name; // set name of thread
sleepTime = generator.nextInt(5000); // random sleep 0-5 secs

} // end PrintTask constructor

// method run is the code to be executed by new thread
public void run()

try // put thread to sleep for sleepTime {
System.out.printf("%s sleeps for %d ms.\n",threadName,sleepTime );
Thread.sleep( sleepTime ); // put thread to sleep

} // end try
// if thread interrupted while sleeping, print stack trace

catch ( InterruptedException exception ) {
exception.printStackTrace();

} // end catch
// print thread name

System.out.printf( "%s done sleeping\n", threadName );
} // end method run

} // end class PrintTask
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Executors Example (cont’d)
• When a PrintTask is assigned to a processor for the first time, 

its run method begins execution. 

• The static method sleep of class Thread is invoked to place 

the thread into the timed waiting state. 

• At this point, the thread loses the processor, and the system 

allows another thread to execute. 

• When the thread awakens, it reenters the runnable state. 

• When the PrintTask is assigned to a processor again, the 

thread’s name is output saying the thread is done sleeping and 

method run terminates. 
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Executors Example Main Code
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//RunnableTester: Multiple threads printing at different intervals
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;

public class RunnableTester {

public static void main( String[] args ) {

// create and name each runnable
PrintTask task1 = new PrintTask( "thread1" );
PrintTask task2 = new PrintTask( "thread2" );
PrintTask task3 = new PrintTask( "thread3" );

System.out.println( "Starting threads" );

// create ExecutorService to manage threads
ExecutorService threadExecutor

= Executors.newFixedThreadPool( 3 );
// start threads and place in runnable state
threadExecutor.execute( task1 ); // start task1
threadExecutor.execute( task2 ); // start task2
threadExecutor.execute( task3 ); // start task3

threadExecutor.shutdown(); // shutdown worker threads

System.out.println( "Threads started, main ends\n" );
} // end main

} // end RunnableTester
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Executors Example Main Code (cont’d)

• The code above creates three threads of execution using the 

PrintTask class. 

• main

– creates and names three PrintTask objects. 

– creates a new ExecutorService using method 

newFixedThreadPool() of class Executors, which creates a 

pool consisting of a fixed number (3) of threads. 

– These threads are used by threadExecutor to execute the 

Runnables. 

– If  execute() is called and all threads in ExecutorService are 

in use, the Runnable will be placed in a queue and assigned to 

the first thread that completes its previous task.
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Executors Example Main Code (cont’d)

Sample Output
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Starting threads

Threads started, main ends

thread1 sleeps for 1217 ms.

thread2 sleeps for 3989 ms.

thread3 sleeps for 662 ms.

thread3 done sleeping

thread1 done sleeping

thread2 done sleeping
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Futures/Callables

• Pre-Java 8 version of Futures was quite weak, only 

supporting waiting for future to complete.

• Also executor framework above works with Runnables

& Runnable cannot return a result.

• A Callable object allows return values after completion.

• The Callable object uses generics to define the type of 

object which is returned.

• If you submit a Callable object to an Executor,

framework returns java.util.concurrent.Future. 

• This Future object can be used to check the status of a 

Callable and to retrieve the result from the Callable.
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Futures/Callables1 (cont’d)
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1This code and associated piece on the next page were written and are Copyright © Lars Vogel.  

Source Code can be found at de.vogella.concurrency.callables.
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Futures/

Callables1 (cont’d)
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1 Copyright © Lars Vogel, 2013


